
Note on the Signi�
an
e of 2x2 Contingen
yTables and Lindley's ParadoxWilliam H. PressApril 13, 20051 Introdu
tionThere is a vast literature, both frequentist and Bayesian, devoted to the questionof de
iding whether a 
ontingen
y table with moderate numbers of 
ounts, saysomething like C0 C1f0 8 3f1 16 26totals 24 29 (1)
shows a signi�
ant di�eren
e between a 
ontrol sample C0 and a diagnosedsample C1 with respe
t to some feature or test with values f0 and f1.In this note, we brie
y review several frequently used methods, noting inparti
ular the seemingly large dis
repan
ies (previously noted by others) be-tween the Bayesian and frequentist answers obtained. We then show that thedis
repan
ies 
an be explained as an example of (so-
alled) Lindley's Para-dox. Finally we suggest an \O
kham-removed prior", motivated within a fullyBayesian framework, that eliminates the dis
repan
ies.Table (1) is not 
hosen at random, by the way, but rather is a good exampleof the problem that we address. It has a p-value for the two-sided Fisher Ex-a
t Test (des
ribed below) of 0:0498; its two 
olumns thus appear to be drawnfrom signi�
antly di�erent distributions (p < 0:05). A one-sided test (appro-priate if the prior expe
tation was that f0 would imply suppressed 
ounts inC1) would yield an even more signi�
ant result, by a fa
tor of two. On theother hand, a Bayes-fa
tor 
al
ulation, 
omparing a single probability model toone with independent probabilities for the two 
olumns (with uniform priors forall probabilities) yields a Bayesian probability that the two 
olumns are iden-ti
ally distributed of 0:3023; the two 
olumns thus seem to be not signi�
antlydi�erent. Whi
h is the 
orre
t answer?1



2 Standard Frequentist Approa
hAgresti [1℄ has given an en
y
lopedi
 survey of the frequentist literature, whi
hwe will not attempt to repeat here. There is general agreement that moder-ate 
ount values require so-
alled \exa
t" (as opposed to asymptoti
) methods.One 
an qui
kly survey the web to determine what methods are most 
om-monly re
ommended as \standard", and most 
ommonly in
luded in standardpa
kages.In brief, the standard approa
h for a table like (1) is:1. Choose a test statisti
 that quanti�es the dis
repan
y with the null hy-pothesis that there is no asso
iation between (C0; C1) and (f0; f1). Popular
hoi
es are the Wald statisti
 and Rao's eÆ
ient s
ore statisti
.2. Choose a method, for example \Fisher's exa
t test" or \Barnard's exa
ttest". The 
hoi
e of a method is equivalent to 
hoosing a distribution of2�2 tables against whi
h to 
ompare table (1). The reason that this is notentirely straightforward is that the 
ommon probability of f0 under thenull hypothesis is not known. Di�erent methods are, in e�e
t, di�erentestimations of this probability.3. Compute the one- or two-sided p-value (as appropriate), that is, the prob-ability of �nding in the population de�ned by the method a value of thetest as extreme as that seen.4. Reje
t the null hypothesis (of no asso
iation) if p < 0:05 (say).Within this paradigm, the single most popular (and therefore most standard)set of 
hoi
es is probably Fisher's exa
t test with the Wald statisti
. For a 2�2table, C0 C1f0 m nf1 M �m N � ntotals M N (2)
the Wald statisti
 is essentially the standardized di�eren
e of the observed prob-abilities under the null hypothesis,T = bp1 � bp2pbp(1� bp)(M�1 +N�1) (3)where bp1 � m=M; bp2 � n=N; bp � (m+ n)=(M +N) (4)2



(We will be 
areful not to 
onfuse the p, the 
ommon probability under the nullhypothesis, with the notation p that o

urs in a p-value test!)Fisher's Exa
t Test 
ompares the T statisti
 to the distribution of T of alltables with the same marginals, both 
olumn and row. For the example of table(1), say, this would be all tables of the formC0 C1f0 m 11�mf1 24�m 18 +mtotals 24 29 (5)
Sin
e all 
ell 
ounts must be positive, there are only 12 su
h tables in thisexample. The probability of ea
h table under the null hypothesis is the hyper-geometri
 probability, here,P (m) = �24m�� 2911�m�,�5311�; 0 � m � 11 (6)Be
ause of the small number of distin
t tables in the population, only 
ertaindis
rete p-values are possible, a widely noted fa
t that we will revisit below.Barnard's Exa
t Test, proposed two de
ades after Fisher, was one attempt toeliminate this artifa
t. See [5℄ for a pedagogi
al 
omparison of the two methods.Any of these, or similar, methods is open to the usual 
riti
ism of p-tests,namely that di�erent 
hoi
es of statisti
 
an give rather di�erent tail probabil-ities for a given data set. In pra
ti
e, the di�eren
es are rarely large, however.Sin
e this issue is 
ommon to all p-tests, it is always swept under the rug.More serious is the issue in Step 2 above, namely the (impli
it) estimationof the 
ommon probability P under the null hypothesis. The problem withany su
h 
hoi
e is that, in general, it will not be the result of a 
onsistentestimator on the population from whi
h the table was a
tually drawn. Thusthe p-values �nally obtained are not tail probabilities of the test statisti
 for thea
tual experiment. In no sense is it pre
isely true that the null hypothesis willbe in
orre
tly reje
ted only 1 time in 20. This is a 
ommon Bayesian obje
tionto many frequentist pro
edures, namely their relian
e on assumed (non-unique)distributions of results that might have been seen, but in fa
t were not.3 Bayesian Approa
hesAgresti [2℄ has surveyed the Bayesian literature in a re
ent review. Be
ause theuse of a Bayesian methodology in analyzing 
ontingen
y tables is un
ommon,it is harder to identify a \standard" Bayesian approa
h. The most obvious and3



straightforward approa
h, namely the use of Bayes fa
tors, is rarely used. Thereason for this avoidan
e seems to be pre
isely the issue that we raise (andresolve) in this note, namely the apparent large dis
repan
ies between Bayesfa
tor methods and other methods (both Bayesian and tail-test), always in thedemoralizing sense that the Bayes fa
tor is less powerful in disproving the nullhypothesis of no asso
iation (i.e., less able to �nd signi�
ant asso
iations).Je�reys, in later editions of his book [4℄, develops the Bayes fa
tor methodfor 2 � 2 
ontingen
y tables, similarly to the 
al
ulation below. He gives twonumeri
al examples, one of whi
h yields a probability (of the null hypothesis)0:27, the other a respe
table 0:0058. What Je�reys does not mention is thatFisher's Exa
t Test, applied to the same data, gives probabilities of 0:057 and0:00053, respe
tively. Good [3℄, working a series of examples, notes the dis
rep-an
ies between tail area probabilities and Bayes Fa
tors, and attempts, withvery limited su

ess, to �nd an empiri
al relation between the two. (This note
an be viewed as a more prin
ipled approa
h to Good's program.)Suppose H is the (null) hypothesis that the 
olumns are identi
ally dis-tributed with prob(f0) = p, while H 0 is the alternative hypothesis that the
olumns have di�erent probabilities prob(f0jC0;1) = p0;1. Then the Bayes fa
-tor is (see, e.g., [7℄)prob(H jD)prob(H 0jD) = prob(DjH)prob(DjH 0) � prob(H)prob(H 0)= R prob(D; pjH) dpR prob(D; p1; p2jH 0) dp1dp2 � prob(H)prob(H 0)= R prob(DjH; p) prob(pjH) dpRR prob(DjH 0; p1; p2) prob(p1; p2jH 0) dp1dp2 � prob(H)prob(H 0) (7)From the binomial distribution, we haveprob(D; pjH) = �Mm�pm(1� p)M�m �Nn�pn(1� p)N�nprob(DjH 0; p1; p2) = �Mm�p1m(1� p1)M�m �Nn�p2n(1� p2)N�n (8)For now, we take the prior ratio on the hypotheses as unity, prob(H)=prob(H 0) =1. While we might well assume uniform priors on p, p1, and p2 in (0; 1), a moregeneral 
hoi
e is to use the 
onjugate priorprob(pjH) / p��(1� p)��prob(p1; p2jH 0) / p1��(1� p1)��p2��(1� p2)�� (9)where 0 � � < 1. With these 
hoi
es, equation (7) readily yieldsF � prob(H jD)prob(H 0jD) = B(m+ n+ 1� 2�;M +N �m� n+ 1� 2�)B(m+ 1� �;M �m+ 1� �)B(n + 1� �;N � n+ 1� �)(10)4



where B is the beta fun
tion.In equation (10), one may interpret 1 � � as a 
onstant number of 
ountsadded by the prior to ea
h of the observed 
ounts m, n, M �m, and N � n.(This is a typi
al out
ome of using 
onjugate priors.) We will generally take� = 1=2, but our results are not sensitive to this 
hoi
e.We 
an now readily demonstrate what is the problem that Je�reys ignoredand Good puzzled over. We de�ne a population of 2� 2 
ontingen
y tables bythe pres
ription:� Choose M and N uniformly i.i.d. between 5 and 100.� Choose m uniformly in 0 : : :M , and n uniformly in 0 : : :N .For tables drawn randomly from this population we 
ompute the two-sidedFisher's Exa
t Test (with the Wald statisti
) p-value, and also the Bayesianprobability of the null hypothesis from equation (10), that is, F=(1 + F ). Theresult is shown in Figure 1. Evident is a strong tenden
y for the Bayes proba-bility to lie at values > 0:1, making reje
tion of the null hypothesis impossible,even in 
ases where Fisher's test reje
ts the null hypothesis as strongly as 0:005.While some more fervent Bayesians have rationalized this result as, somehow,a good thing { an intrinsi
 
onservatism of the Bayes fa
tor { most have insteadsubstituted di�erent Bayesian methods (as reviewed in [2℄) without this 
aw.A simple example is to use a Bayesian quantity like prob(p1 > p2) as a tailstatisti
 (Good's so-
alled \Bayes/non-Bayes 
ompromise"). Similar argumentsto those leading to equation (10) giveprob(p1 > p2) = RRp1>p2 dp1dp2 p1m��(1� p1)M�m��p2n��(1� p2)N�n��B(m+ 1� �;M �m+ 1� �)B(n + 1� �;N � n+ 1� �)(11)where the integrals must be done numeri
ally for ea
h set of fm;n;M;N; �g.To get a two-sided tail probability to 
ompare to two-tailed Fisher, we take thesmaller of prob(p1 > p2) and prob(p2 > p1) and multiply it by 2.Figure 2 shows the result. Mu
h of the verti
al dispersion 
an be understoodas due to the dis
reteness of the Fisher Exa
t Test's p-values. Simply 
hanging� to < in the de�nition of the Fisher test moves many points that lie abovethe diagonal to lo
ations below the diagonal. With this 
aveat, it is fair to
on
lude from the Figure that the two tail tests are measuring essentially thesame property of the 
ontingen
y tables.The linearity and small dispersion of Figure 2 further suggests that there isnothing \wrong" with the Bayesian probabilities p1 and p2, and that the dis-
repan
y shown in Figure 1 must lie in either the 
ommon probability p (whi
hturns out not to be the 
ase), or in the way that the Bayes fa
tor 
ompares pwith p1 and p2 (whi
h turns out to be pre
isely the 
ase).
5
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Bayes Factor ProbabilityFigure 1: The Bayes fa
tor probability of the null hypothesis F=(1 + F ) isplotted against Fisher's Exa
t Test p-value (two-tailed) for a sample of 2 � 2
ontingen
y tables. The Bayes fa
tor often fails to reje
t the null hypothesis,even when it is strongly reje
ted by the p-value test.4 Lindley's ParadoxLindley's Paradox (see [6℄ for a review of the literature) is a name given toexa
tly the situation that we have just seen: Analysis based on Bayes fa
torodds ratios 
an award a high probability to a sharp null hypothesis, even whenthat hypothesis is easily reje
ted by a tail test.The 
anoni
al example of Lindley's paradox is that of measuring a singlenormal variable y with known (small) �, but unknown mean �. The null hy-pothesis H is that � has a 
ertain value �0. The alternative hypothesis H 0 is
6
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Bayesian p-Value (Two-Tailed)Figure 2: The Bayes tail probability p-values are plotted against Fisher's Exa
tTest p-values (two-tailed) for the same sample of 2�2 
ontingen
y tables. Someof the varian
e seen results from the dis
reteness of Fisher p-values.that it has some other value. We then write (
f. equation 7),prob(H jD)prob(H 0jD) = prob(DjH)prob(DjH 0) � prob(H)prob(H 0)= prob(DjH)R prob(DjH 0; �) prob(�jH 0) d� � prob(H)prob(H 0)= (2��2)�1=2 exp(�[y � �0℄2=[2�2℄)R (2��2)�1=2 exp(�[y � �℄2=[2�2℄)prob(�jH 0) d� � prob(H)prob(H 0)� (2��2)�1=2 exp(�[y � �0℄2=[2�2℄)prob(yjH 0) � prob(H)prob(H 0) (12)where the approximation is that, for small �, the Gaussian in the denominatorapproximates a Dira
 delta fun
tion.Attention now fo
usses on the surviving prior on y in the denominator.The broader we make our prior on y, the smaller prob(yjH 0) be
omes, and themore the null hypothesis is favored. The so-
alled paradox is that as we tryto take the limit of 
omplete ignoran
e of y { seemingly allowing it to have an7



arbitrarily large range { we simultaneously make it impossible to disprove thenull hypothesis that it has the value y0.Lindley's paradox is also a good example of \it's not a bug, it's a feature!".If we take prob(yjH 0) = 1ymax � ymin ; ymin < y < ymax (13)(and zero elsewhere), then many Bayesians (e.g., [7℄) would rewrite the last lineof equation (12) asprob(H jD)prob(H 0jD) � exp(�[y � �0℄2=[2�2℄)� ymax � ymin(2�)�1=2� � prob(H)prob(H 0) (14)They would then identify the se
ond fa
tor on the right as a so-
alled \O
khamfa
tor", by whi
h any arbitrary new parameter added to a theory ought tobe penalized, so as to avoid the over�tting of data. Indeed, the automati
emergen
e of O
kham fa
tors in Bayesian 
al
ulations is taken as a strength,not a weakness, of the formalism. O
kham fa
tors play, in a Bayesian 
ontext,the role that Bonferroni 
orre
tions play in a frequentist 
ontext: both serve todis
ount the signi�
an
e of inferen
es made from multiple hypotheses.Noti
e that the third fa
tor in equation (14) is also a prior, namely the priorodds ratio between H and H 0. This is often taken as unity, meaning that thereis no reason to prefer H over H 0 a priori. But is unity a
tually the 
orre
t\neutral" prior?5 Use of O
kham-Removed Priors to Resolvethe ParadoxThe perspe
tive of this note is that there is less here than meets the eye; thatLindley's paradox results simply from a 
onfusion between two 
on
eptuallydi�erent uses of added parameters; and that the Bayesian framework alreadyprovides the means for disentangling this 
onfusion.When we add a parameter � to a model in order to �t the data better,we hope for a narrow posterior probability for its values, whi
h we will likelysummarize as a value and un
ertainty. We are disappointed if the posterioris broad and uninformative. It is of no parti
ular 
onsequen
e if the posterior\not
hes out" (i.e., eliminates) any parti
ular value �0 of the new parameter.On the other hand, when we add a parameter to a model spe
i�
ally as asa foil for a null hypothesis value �0, then the situation is 
ompletely reversed:We are not bothered if the posterior on � is broad, and we are not parti
ularlyinterested in its value if it is narrow. Rather, we hope for a 
lear \not
h" on�0, su
h that that parti
ular value 
an be reje
ted.The Bayes fa
tor formalism provides the means for distinguishing betweenthese two di�erent situations, by allowing us to 
hoose di�erent interpretationsfor the third fa
tor, the overall prior odds ratio, in equation (14). In the 
aseof the �rst situation, the interpretation given above is appropriate: Unity prior8



odds ratio means neutrality on whether to add a �tting parameter. Indeed, aslight reworking of equations (12) and (14) would yield the Bayes InformationCriterion (BIC) as an indi
ator of whether an additional model parameter isfavored. The \automati
" O
kham fa
tor is entirely appropriate in this situa-tion.In the 
ase of the se
ond situation, however, there is no reason for us tobe slaves to the previous meaning of the overall prior. Rather, knowing thatour interest is in disproving a null hypothesis, we are free to 
hoose a priorthat 
orre
ts for (i.e., \undoes") the O
kham fa
tor. In other words, the trulyneutral prior for this situation is the inverse of the O
kham fa
tor, favoringthe alternative hypothesis. The distin
tion is between parameter �tting (witha possibly variable number of parameters), on the one hand, and signi�
an
etesting on the other.The population of 2 � 2 
ontingen
y tables de�ned above provides a ni
etest of our 
laims. The only 
ompli
ation is that there is a parameter p in thenull hypothesis, and two parameters p0;1 in the alternative hypothesis. Thusour neutral prior for signi�
an
e testing will be the ratio of the two (estimated)O
kham's fa
tors.For the null hypothesis, the O
kham fa
tor K0 is estimated as the range ofp (that is, unity) divided by an estimate of the un
ertainty in p,K0 � 1pp̂(1� p̂)=(M +N) (15)where p̂ � (m+ n)=(M +N) (16)For the alternative hypothesis, the O
kham fa
tor K1 is estimated as the areaof the unit square, divided by the produ
t of the un
ertainties of p0 and p1.K1 � 1pp̂0(1� p̂0)p̂1(1� p̂1)=(MN) (17)where p̂0 � m=M; p̂1 � n=N (18)The neutral prior is thus taken asprob(H)prob(H 0) = K0K1 (19)Figures 3 and 4 show the 
omparison between the Bayes fa
tor probabilitywith O
kham-removed prior and either the two-tailed Fisher Exa
t Test (Figure3) or, from equation (11), the Bayesian tail probability (two-tailed). The latter�gure is most enlightening, sin
e it does not have the dis
reteness artifa
ts ofFisher's test.With the O
kham-removed prior, there is a very tight agreement betweenthe tail probability and the Bayes fa
tor probability, extending from small p-values all the way up to almost unity. The 
urvature near p = 1 is readily9
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"Ockham-Removed" Bayes Factor ProbabilityFigure 3: Use of an O
kham-removed prior (equation 19) brings the Bayes fa
tormethod into good agreement with Fisher's Exa
t p-value. The dis
repan
y nearp = 1 is be
ause any two-tailed test has the value 1 when its tails \
ross", whilethe Bayes fa
tor method never assigns probability 1 to the null hypothesis.explained as an artifa
t of tail tests: As the tail probability in
reases, it even-tually 
rosses 50% (so that the two-tailed probability rea
hes unity), at whi
hpoint the de�nition of the tails is reversed. Thus there will be a substantialpopulation very near unity. For the Bayes fa
tor probablity, on the other hand,unity probability for the null hypothesis is a limiting 
ase that is never rea
hed.6 Con
lusionsWhen applied to 
ontingen
y tables, Bayes fa
tor methods have long beenknown to support the null hypothesis (of no asso
iation), even when tail testsstrongly indi
ate otherwise. This tenden
y is an example of Lindley's Paradox,and is due to the so-
alled O
kham fa
tor that naturally arises in Bayes fa
tormethods.O
kham fa
tors are appropriate in parameter-�tting appli
ations, as safe-guards against over�tting. In su
h appli
ations, they are 
losely related to theBayes Information Criterion (BIC) for de
iding whether to add a new parame-10
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"Ockham-Removed" Bayes Factor ProbabilityFigure 4: Same as Figure 3, but using the Bayesian tail probability (equation11) instead of the Fisher test, thus eliminating the varian
e due to the latter'sdis
reteness. As in Figure 3, the 
urvature at the upper left is an artifa
t of thetail test when its tails 
ross.ter.However, O
kham fa
tors are not appropriate when an added parameter issimply a nuisan
e \foil" against whi
h the signi�
an
e of a null hypothesis isto be tested. In su
h a 
ase, the \neutral" prior odds ratio is not unity, but israther the inverse of the O
kham fa
tor.If we use an \O
kham-removed" prior, then tail tests and the the Bayes fa
tormethod give very nearly identi
al results. We should not expe
t exa
tly identi
alresults, even on average: On the frequentist side, the 
hoi
e of a di�erent tailstatisti
 will give di�erent results. On the Bayesian side, our estimation of theO
kham fa
tor is only approximate, and is open to dis
ussion at the level offa
tors 
lose to unity.7 A
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